节能

当前位置:   主页 > 节能 >

南长山镇新机电轮轴式BH150R-L1-4-B2-D1-S6联轴行星减速器

文章来源:ymcdkj 发布时间:2024-05-08 10:39:45

南长山镇新机电:轮轴式BH150R-L1-4-B2-D1-S6联轴行星减速器
保证拉齿形公差.5mm。保证拉M值、K值公差.25mm。精拉铲磨后切削齿不留刃带,校准齿刃带均匀。精拉齿形误差.5mm。因而要保证 表面达到需求,精拉的设计需注意以下几点:精拉由轮槽外圆平面成型拉、轮槽槽底成型拉、轮槽轮廓成型拉等3部分组成。各部分拉的齿升量、齿距各不相同,精拉齿升量要小,在全齿型切削时更要小,对于整把精拉而言,齿升量设计应为前大后小。


3.减速机位置的选择。位置允许的情况下,尽量不采用立式。立式时,润滑油的添加量要比水平多很多,易造成减速机发热和漏油。



减速机断轴的原因及注意事项
当驱动电机和减速机间装配同心度保证得较好时,驱动电机输出轴所承受的仅仅是转动力(扭矩),运转时也会很平顺,没有脉动感。而在不同心时,驱动电机输出轴还要承受来自于减速机输入端的径向力(弯矩)。这个径向力的作用将会使驱动电机输出轴被迫弯曲,而且弯曲的方向会随着输出轴转动不断变化。如果同心度的误差较大时,该径向力使电机输出轴局部温度升高,其金属结构不断被破坏, 终将导致驱动电机输出轴因局部疲劳而折断。两者同心度的误差越大时,驱动电机输出轴折断的时间越短。在驱动电机输出轴折断的同时,减速机输入端同样也会承受来自于驱动电机输出轴方面的径向力,如果这个径向力超出减速机输入端所能承受的径向负荷的话,其结果也将导致减速机输入端产生变形甚至断裂或输入端支撑轴承损坏。
因此,在装配时保证同心度至关重要!从装配工艺上分析,如果驱动电机轴和减速机输入端同心,那么驱动电机轴面和减速机输入端孔面间就会很吻合,它们的接触面紧紧相贴,没有径向力和变形空间。而装配时如果不同心,那么接触面之间就会不吻合或有间隙,就有径向力并给变形了空间。
同样,减速机的输出轴也有折断或弯曲现象发生,其原因与驱动电机的断轴原因相同。但减速机的出力是驱动电机出力和减速比之积,相对于电机来讲出力更大,故减速机输出轴更易被折断。因此,用户在使用减速机时,对其输出端装配时同心度的保证更应十分注意!



步进电机的参数 引入转矩(pull-in torque) 引入转矩是指步进马达能够与输入讯号同步起动、停止时的力矩,因此在引入转矩以下的区域中马达可以随着输入讯号同步起动、停止、以及正反转,而此区域就称作自起动区(start-stop region)。 自起动转矩(maximum starting torque) 自起动转矩是指当起动脉波率低于10pps时,步进马达能够与输入讯号同步起动、停止的力矩。 自起动频率是指马达在无负载(输出转矩为零)时的输入脉波率,此时马达可以瞬间停止、起动。 脱出转矩(pull-out torque)自起动频率(maximum starting pulse rate) 脱出转矩是指步进马达能够与输入讯号同步运转,但无法瞬间起动、停止时的力矩,因此超过脱出转矩则马达无法运转,同时介于脱出转矩以下与引入转矩以上的区域则马达无法瞬间起动、停止,此区域称作扭转区域(slew region),若欲在扭转区域中起动、停止则必须先将马达回复到自起动区,否则会有失步现象的发生。 响应频率(maximum slewing pulse rate) 响应频率是指马达在无负载(输出转矩为零)时的输入脉波率,此时马达无法瞬间停止、起动。 保持转矩(holding torque) 保持转矩是指当线圈激磁的情况下,转子保持不动时,外界负载改变转子位置时所需施加的转矩。 步进马达转矩与转速之关系为指数式反比,也就是当转速越大时转矩越小,相反的转速越小则转矩越大,这种现象是因为激磁线圈可以视为电感与电阻的串联电路

+ 40-S2-P2
-200-S2-P2